Адгезия: что это такое, для чего нужна, как её улучшить


Адгезия — это связь между приведенными в контакт разнородными поверхностями. Причины возникновения адгезионной связи — действие межмолекулярных сил или сил химического взаимодействия. Адгезия обусловливает склеивание твердых тел — субстратов — с помощью клеющего вещества — адгезива, а также связь защитного или декоративного лакокрасочного покрытия с основой. Адгезия играет также важную роль в процессе сухого трения. В случае одинаковой природы соприкасающихся поверхностей следует говорить об аутогезии (автогезии), которая лежит в основе многих процессов переработки полимерных материалов. При длительном соприкосновении одинаковых поверхностей и установлении в зоне контакта структуры, характерной для любой точки в объеме тела, прочность аутогезионного соединения приближается к когезионной прочности материала (см. когезия).

На межфазной поверхности двух жидкостей или жидкости и твердого тела адгезия может достигать предельно высокого значения, так как контакт между поверхностями в этом случае полный. Адгезия двух твердых тел из-за неровностей поверхностей и соприкосновения лишь в отдельных точках, как правило, мала. Однако высокая адгезия может быть достигнута и в этом случае, если поверхностные слои контактирующих тел находятся в пластическом или высокоэластичном состоянии и прижаты друг к другу с достаточной силой.

Адгезия, что это такое – теоретические основы

Адгезия является одним из ключевых свойств материалов в следующих областях:

  1. Металлургия – антикоррозионные покрытия.
  2. Механика – слой смазки на поверхности элементов машин и механизмов.
  3. Медицина – стоматология.
  4. Строительство. В данной отрасли адгезия является одним из главных показателей качества выполнения работ и надёжности конструкций.

Практически на всех этапах строительства контролируются показатели адгезии для следующих соединений:

  • лакокрасочные материалы;
  • штукатурные смеси, стяжки и заливки;
  • клеящие составы, кладочные растворы, герметики и т.п.

Пример химической адгезии — реакция соединения силиконового герметика со стеклом

Существует три основных принципа адгезионного соединения материалов. В строительстве и технологии они проявляются следующим образом:

  1. Механический — сцепление происходит путем прилипания наносимого материала к основанию. Механизм такого соединения заключается в проникновении наносимого вещества в поры внешнего слоя или соединении с шероховатой поверхностью. Примером, является окраска поверхности бетона или металла.
  2. Химический — связь между материалами, в том числе различной плотности, происходит на атомном уровне. Для образования такой связи необходимо присутствие катализатора. Примером адгезии такого типа является пайка или сварка.
  3. Физический — на сопрягаемых поверхностях возникает электромагнитная межмолекулярная связь. Может образоваться в результате возникновения статического заряда или под воздействием постоянного магнитного или электромагнитного поля. Пример использования в технологии — окрашивание различных поверхностей в электромагнитном поле.

Праймеры различных поколений

За все время существования адгезивных систем в стоматологии, используемых именно для дентина, их сменилось 7 поколений. Отмечается тенденция упрощения процедуры, но при этом адгезия становится выше и качественней.

Первое поколение — это самые первые системы, которые стали использоваться примерно с конца 70-х годов ХХ века. Они хороши для использования при работе с эмалью, но вот к дентину прикрепляются достаточно плохо. Адгезия происходила во время контакта самого бонда и кальция в дентине. Как правило, первые проблемы таких систем начинали появляться спустя несколько месяцев после выполнения стоматологом своей работы. Также после проведения манипуляций в области жевательных зубов отмечалась повышенная чувствительность.

Системы второго поколения пришли на стоматологический рынок в начале 80-х. У них отмечалась повышенная адгезия к дентину, однако для надежной фиксации композитов ее не хватало. Также при применении таких систем были отмечены микроподтекания, а чувствительность после вмешательства оставалась. А примерно спустя год после стоматологических манипуляций 30% реставраций приходили в негодность.

Адгезивы третьего поколения появились в конце 80-х, они стали двухкомпонентными, то есть включали в себя адгезив и праймер. Повысились показатели адгезии, стало возможным проводить препарирование зубов — началась эра ультраконсервативной стоматологии. Чувствительность зубов после операции снизилась. Но агенты-бонды оставались недолговечными — примерно через три года они теряли свои первоначальные качества. Но на жевательных зубах адгезивы стали уже применяться активнее.

На заметку! Адгезивы данного поколения стали использоваться также при работе с керамикой и металлом.

Далее родилось четвертое поколение адгезивных систем — примерно в начале 90-х ХХ века они появились в кабинетах стоматологов и позволили увеличить адгезию еще больше, при этом снизив чувствительность зубов. Появилось понятие гибридного слоя и протравка при работе с дентином. Главный недостаток систем того поколения — необходимость смешивания компонентов в точных пропорциях. Это достаточно сложно делать на глаз.

Пятое поколение позволило избавиться от проблем, связанных со смешиванием — появились готовые смеси, содержащие и праймер, и адгезив одновременно. Здесь тоже проводилась протравка эмали и дентина. Такие системы используются до сих пор и остаются очень популярными за счет высоких показателей соединения и отсутствия необходимости смешивать компоненты.

Адгезивные составы шестого поколения позволили избавиться от этапа протравливания. Все используемые вещества являются самопротравливающими, но их нужно смешивать перед применением. Но, тем не менее, в работе они проще, чем предыдущие варианты. Минус — ухудшение адгезии к эмали со временем. С дентином такой проблемы не возникает.

Последнее — седьмое — поколение еще не до конца сформировано. Сейчас пока есть только одна система такого типа. Отличие от предыдущей вариации — нет необходимости смешивать различные компоненты, производители все сделали заранее.

Адгезионные свойства строительных и отделочных материалов

Адгезия строительных и отделочных материалов осуществляется, преимущественно, по принципу механического и химического соединения. В строительстве используется большое количество различных веществ, эксплуатационные характеристики и специфика взаимодействия которых кардинальным образом отличаются. Разделим их на три основные группы и охарактеризуем более подробно.

Лакокрасочные материалы

Адгезия ЛКМ к поверхности основания осуществляется по механическому принципу. При этом, максимальные показатели прочности достигаются в том случае, если рабочая поверхность материала имеет шероховатости или пористая. В первом случае существенно увеличивается площадь соприкосновения, во втором, краска проникает в поверхностный слой основания. Кроме того, адгезионные свойства ЛКМ увеличиваются благодаря различным модифицирующим добавкам:

  • органосиланы и полиорганосилоксаны оказывают дополнительное гидрофобизирующее и антикоррозионное действие;
  • полиамидные и полиэфирные смолы;
  • металлоорганические катализаторы химических процессов отвердения ЛКМ;
  • балластные мелкодисперсные наполнители (к примеру, тальк).

Краска с тальковым наполнителем — не вспучивающийся антипирен

Строительные штукатурки и сухие клеящие смеси

До недавнего времени, строительные и отделочные работы велись с использованием различных растворов на основе гипса, цемента и извести. Зачастую, их смешивали в определённой пропорции, что давало ограниченное изменение их основных свойств. Современные готовые сухие строительные смеси: стартовые, финишные и мультифинишные штукатурки и шпаклевки, имеют гораздо более сложный состав. Широко применяются добавки различного происхождения:

  • минеральные — магнезиальные катализаторы, жидкое стекло, глиноземистый, кислотоустойчивый или безусадочный цемент, микрокремнезём и т.п.
  • полимерные — диспергируемые полимеры (ПВА, полиакрилаты, винилацетаты и т.п.).

Такие модификаторы существенно изменяют следующие основные характеристики строительных смесей:

  • пластичность;
  • водоудерживающие свойства;
  • тиксотропность.

Пример плохой адгезии штукатурки к кирпичной стене

Важно! Использование полимерных модификаторов даёт более выраженный эффект усиления адгезии. Однако образование устойчивых соединений полимерных плёнок на границе разнотипных материалов (основание — твердеющая штукатурка) возможно только при определённой температуре. Этот термин называется минимальной температурой плёнкообразования – МТП. У разных штукатурок она может быть различной от +5°С до +10°С. Во избежание расслоения, необходимо точно придерживаться рекомендаций производителя относительно температуры, как окружающей среды, так и основания.

Герметики

Герметики, использующиеся в строительстве, различают по трём различным типам, каждый из которых требует определённых условий для высокопрочной адгезии с материалом основания. Рассмотрим каждый тип подробнее.

  • Высыхающие герметики. В состав входят различные полимеры и органические растворители: бутадиен-стирольные или нитрильные, хлоропреновый каучук и т.п. Как правило, имеют пастообразную консистенцию с вязкостью 300-550 Па. В зависимости от вязкости, наносятся либо шпателем, либо кистью. После их нанесения на поверхность, необходимо определённое время для высыхания (испарения растворителя) и образования полимерной плёнки.

Высыхающий акриловый герметик

  • Невысыхающие герметики. Состоят, как правило, из каучука, битума и различных пластификаторов. Имеют ограниченную устойчивость к высокой температуре, не более 700С-800С, после чего начинают деформироваться.

Битумный невысыхающий состав, используется для герметизации ливневой водосточной системы

  • Отверждающиеся герметики. После их нанесения, под воздействием различных факторов: влага, тепло, химические реагенты, происходит необратимая реакция полимеризации.

Приготовление двухкомпонентного полиуретанового герметика Сазиласт

Из всех перечисленных разновидностей, отверждающиеся герметики обеспечивают максимальную надёжность сцепления с микронеровностями поверхности основания. Кроме того, они устойчивы к высоким температурам, механическим и химическим воздействиям. Они имеют оптимальное сочетание жёсткости и вязкости, позволяющее сохранять первоначальную форму. Однако, являются наиболее дорогостоящими и сложными в использовании.

Почему стоит обратиться в СтройЛаб

Своим клиентам мы предлагаем:

  • Возможность обращения в любое время суток.
  • Проверку всей документации по проекту. Это позволит провести испытания более оперативно, так как проще будет точечно определить участки для проверки и места, где возможны дефекты.
  • Конфиденциальность сведений. Они предоставляются только заказчику.
  • Рекомендации по выполнению восстановительных мероприятий с указанием стоимости работ.
  • Квалифицированные консультации по тематическим аспектам.
  • Прозрачные цены на все услуги, которые не меняются во время проведения испытаний. Смета составляется до начала работ.

Мы работаем в Москве и Московской области. Проверку адгезии строительных материалов проводят опытные инженеры с необходимой специализацией. Все работы выполняются максимально быстро и с учетом пожеланий клиента. Подробности уточняйте у наших консультантов по телефону.

Наши сертификаты

Как измеряется адгезия?

Технология измерения адгезии, способы испытания, а также все показатели прочности соединения материалов указаны в следующих нормативах:

  • ГОСТ 31356-2013 — шпаклёвки и штукатурки;
  • ГОСТ 31149-2014 — лакокрасочные материалы;
  • ГОСТ 27325 — ЛКМ к дереву и т.п.

Информация! Адгезия измеряется в кгс/см2, МПа (мегапаскали) или кН (килоньютоны) — это показатель силы, которую необходимо приложить, для разделения материалов основания и покрытия.

Способ определения адгезии лакокрасочных покрытий методом решётчатого надреза

Если раньше адгезионные характеристики материалов можно было измерять только в лабораторных условиях, то на данный момент существует множество приборов, которые можно использовать непосредственно на строительной площадке. Большинство методов измерения адгезии, как «полевых», так и лабораторных связаны с разрушением внешнего, покрывающего, слоя. Но есть несколько устройств, принцип действия которых основан на ультразвуке.

Таблица классификации результатов испытания лакокрасочных материалов

  • Нож адгезиметр. Используется для определения параметров адгезии методом решётчатых и или параллельных надрезов. Применяется для лакокрасочных и плёночных покрытий толщиной до 200 мкм.

Нож адгезиметр, модель Константа-КН2

  • Пульсар 21. Устройство определяет плотность материалов. Используется для выявления трещин и расслоений в бетоне как штучном, так и монолитном. Существуют специальные прошивки и подпрограммы, которые по плотности прилегания, позволяют определить прочность адгезии штукатурок различных типов к бетонным поверхностям.

Ультразвуковой измеритель адгезии, Пульсар 21

  • СМ-1У. Используется для определения адгезии полимерных и битумных изоляционных покрытий методом частичного разрушения – сдвига. Принцип измерения основан на выявлении линейных деформаций изоляционного материала. Как правило, применяется для определения прочности изоляционного покрытия трубопроводов. Допускается использование для проверки качества нанесение битумной гидроизоляции на строительные конструкции: стены подвалов и цокольных этажей, плоские крыши и т.п.

Адгезиметр СМ-1У

Наглядный пример из жизни: штукатурка + плиточный клей + плитка

На самом деле все, кто трудиться на стройке очень часто сталкиваются с проявлениями этих видов разрушений.

Случай первый — когда когезионная прочность сильнее, чем адгезионная прочность:

Представим себе, что нам понадобилось демонтировать уложенную пару недель назад плитку.

Берём для этого широкое зубило, обычный молоток:


Этого друга можно смело награждать всевозможными почестями. Чего только он не видел — и барбекю с печами им клали и стены ломали…)


Зубило, шириной 10 см иногда очень выручает. Как только встретил его в Кастораме, сразу же купил.

Вставляем зубило между плиткой и основанием и начинаем производить удары, тем самым прилагая усилие “на разрыв”. Т.е мы не сверху бьём, а сбоку, иначе плитка разобьётся и эксперимент будет провален.

Если в этом случае плитка вместе с клеем легко отпадает от стяжки или штукатурки, не оставляя там следов или наоборот — весь клей остался на основании, а плитку даже и чистить не надо, то в этом случае адгезионное сцепление было крепче, чем когезионное. Т.е. когезия в данном случае проиграла.

Случай второй — когда адгезионная прочность сильнее, чем когезионная:

Если в нашем примере остаётся клей и на штукатурке и на плитке и разрыв идёт в слое плиточного клея, то здесь когезия была слабее нежели адгезия.

На фото яркий пример когезионного разрыва или “когезионного разрушения” внутри слоя — вся штукатурка, как видите на плитке.

На самом деле, в данном случае она осыпалась даже тогда, когда я просто проводил по ней пальцем… Да, и такое бывает…

Факторы, снижающие адгезию материалов

На снижение адгезии оказывают влияние различные физические и химические факторы. К физическим относится температура и влажность окружающей среды в момент нанесения декоративно-отделочных или защитных материалов. Также снижают адгезионные взаимодействия различные загрязнения, в частности, пыль покрывающая поверхность основания. В процессе эксплуатации влияние на прочность соединения лакокрасочных материалов может оказывать ультрафиолетовое излучение.

Химические факторы, снижающие адгезию, представлены различными материалами загрязняющими поверхность: бензин и масла, жиры, кислотные и щелочные растворы и т.п.

Также адгезию отделочных материалов могут снижать различные процессы, возникающие в строительных конструкциях:

  • усадка;
  • растягивающие и сжимающие напряжения.

Информация! Вещество, наносимое на поверхность для увеличения силы сцепления между основанием и отделочным материалом, называется адгезивом. Основание, на которое наносится адгезив, называется субстратом.

Пример параметров адгезии плиточного клея LITOSTONE K99 (БЕЛЫЙ):

ХарактеристикаЕдиница меры адгезииПараметр
Адгезия (прочность клеевого соединения) после выдерживания в воздушно-сухой среде.МПа≥1,0
Адгезия (прочность клеевого соединения) после циклического замораживания и оттаивания.МПа≥1,0
Адгезия (прочность клеевого соединения после выдерживания при высоких температурахМПа≥1,0
Адгезия (прочность клеевого соединения) после выдерживания в водной средеМПа≥1,0
Адгезия (прочность клеевого соединения после выдерживания в воздушно-сухой среде в течение 6 часовМПа≥0,5

Методы повышения адгезии

В строительстве существует несколько универсальных способов повышения адгезии декоративных отделочных материалов с поверхностью основания:

  1. Механический – поверхности основания придают шероховатость, чтобы увеличить площадь соприкосновения. Для этого её обрабатывают различными абразивными материалами, наносят насечки и т.п.
  2. Химический – в состав наносимых защитно-отделочных материалов добавляют различные вещества. Это, как правило, полимеры, образующие более прочные связи и придающие материалу дополнительную эластичность.
  3. Физико-химический – поверхность основания обрабатывают грунтовкой, изменяющей основные химические параметры материала и оказывающей влияние на определённые физические свойства. К примеру, снижение влагопоглощения у пористых материалов, закрепление рыхлого внешнего слоя и т.п.

Обработка поверхности основания перед покраской абразивной шкуркой

Грунтование поверхности перед нанесением штукатурки

Можно ли усилить адгезию и когезию?

Усиление адгезии

Для этого как раз и существуют специальные пропитки, те же самые грунтовки для предварительной обработки поверхности. Например, популярная на сегодня Грунтовка ceresit ct17:

Или адгезионная добавка для штукатурки. К примеру адгезионную добавку ceresit cc81 я использовал при штукатурке лестницы:

На самом деле зачастую, чтобы улучшить адгезию достаточно просто тщательно пропылесосить + перед тем как штукатурить или наносить смесь — тщательно промазать оcнование (на сдир), а там нед всякого рода углубления руками в перчатках + соблюдать все технологические процессы и условия при проведении работу.

Поверьте, если в жару попытаться приклеить плитку на клей, который уже минут пять, как “начёсан” — ничего хорошего из этого не получится (на солнце и в ветреную погоду влага очень быстро испаряется из плиточного клея и верхний слой выветривается и адгезия плитки с клеем сильно уменьшится).

Разумеется, существуют специальные клея с увеличенным открытым временем, но это не панацея.

Улучшение когезии

Существуют пластификаторы на подобии этого:

Которые помимо всего прочего увеличивают прочность цементной смеси + придают ей гидрофобные свойства, чтобы готовый бетон меньше впитывал влагу.

Способы увеличения адгезии к различным материалам

Более подробно остановимся на методах повышения адгезии для различных материалов, применяемых в строительстве.

Бетон

Бетонные стройматериалы и конструкции повсеместно применяются в строительстве. За счёт высокой плотности и гладкости поверхности их потенциальные адгезионные показатели довольно низкие. Для увеличения прочности соединения отделочных составов необходимо учесть следующие параметры:

  • сухая или влажная поверхность. Как правило, адгезия к сухой поверхности выше. Однако были разработаны множество клеевых смесей, требующих предварительного смачивания поверхности основания. В данном случае необходимо обращать внимание на требования производителя;
  • температура окружающей среды и основания. Большинство отделочных материалов наносится на бетонные поверхности при температуре воздуха не менее +5°С…+7°С. При этом бетон не должен быть замёрзшим;
  • грунтовка. Используется в обязательном порядке. Для плотных бетонов, это составы с наполнителем из кварцевого песка (бетонконтакт), для пористых бетонов (пено-, газобетон), это грунтовки глубокого проникновения на основе акриловых дисперсий;
  • добавление модификаторов. Готовые сухие штукатурные смеси уже имеют в своем составе различные адгезионные добавки. Если штукатурка замешивается самостоятельно, то в неё рекомендуется добавить: ПВА, акриловую грунтовку, вместо такого же количества воды, силикатный клей, придающий отделочному материалу дополнительные влагоотталкивающие свойства.

Результат нанесения цементной штукатурки на переохлажденную поверхность основания

Нанесение кварцевой грунтовки Knauf бетонконтакт

Металл

Ключевую роль в прочности соединения лакокрасочных материалов с металлической поверхностью играет способ и качество подготовки поверхности. В домашних условиях рекомендуется выполнить следующие действия:

  • обезжиривание – обработка металла различными растворителями: 650, 646, Р-4, уайт-спирит, ацетон, керосин. В крайнем случае, поверхность протирается бензином;
  • матирование – обработка основания абразивными материалами;
  • грунтование – использование специальных красок праймеров. Они реализуются в комплекте с декоративными ЛКМ определённого типа.

Важно! Адгезия свинца, алюминия и цинка намного ниже, чем у чугуна и стали. Причина заключается в том, что эти металлы образуют на своей поверхности оксидные плёнки. Поэтому отслаивание лакокрасочных покрытий происходит по оксидному слою. Окрашивание этих материалов рекомендуется осуществлять сразу после удаления плёнки механическим или химическим способом.

Алюминий также подвержен коррозии, особенно при воздействии агрессивных веществ

Древесина и древесные композиты

Древесина является пористой поверхностью с большим количеством неровностей и не испытывает особых проблем с прочностью соединения отделочных материалов. Но нет предела совершенству, поэтому были разработаны различные технологии для улучшения адгезии в сочетании с сохранением защитных и декоративных свойств самой отделки. Их использование, к примеру, в сочетании с акриловыми красками, значительно улучшает атмосферостойкость, устойчивость к ультрафиолетовому выцветанию, придает биологическую защиту материалу. Поверхность древесины обрабатывается самыми разнообразными грунтовками, чаще всего, на основе боразотных соединений и нитроцеллюлозы.

Цель проверки адгезии

При эксплуатации строения испытание гидроизоляции на адгезию требуется, если на объекте имеются протечки воды или влага проступает на каких-то участках. Появление влаги говорит о том, что с наружной стороны фундамента, стен или кровли нет гидроизоляции или она повредилась.

Существующая изоляция может пропускать влагу по разным причинам:

  • Некорректно выбранный материал;
  • Материал низкого качества;
  • Неправильное хранение или транспортировка материала;
  • Неправильная технологии обработки поверхностей гидроизоляцией.

Испытание адгезии при эксплуатации здания позволит:

  • Определить причину образования протечек;
  • Определить проблемные участки;
  • Определить варианты устранения дефектов;
  • Подготовить официальную претензию с экспертным заключением;
  • Обратиться в суд с экспертным заключением.

Во время строительства объекта испытание адгезии тоже может проводиться. Самое главное – это создать надежную изоляцию на стадии возведения здания. Неправильная защита способна привести к различным последствиям:

  • Образованиям протечек и подтоплениям;
  • Формированию трещин на фундаменте и стенах;
  • Скапливанию плесени, которая будет негативно отражаться на окружающей среде.

Проявление всех этих факторов и позволяет исключить испытание адгезии.

Адгезия при сварочных работах

Сварка является одним из наиболее прочных методов соединения металлических конструкций. Это сцепление молекул двух элементов без использования промежуточных или вспомогательных веществ — клея или припоя. Происходит данный процесс под воздействием термической активации. Внешний слой соединяемых элементов нагревают выше температуры плавления, после чего происходит межмолекулярное сближение и соединение материалов.

Электросварочный шов. Соединение двух деталей электросваркой является адгезией, так как металл, использующийся в электроде, выступает в качестве адгезива

Препятствием к качественной адгезии при сварке могут служить следующие факторы:

  • наличие оксидных плёнок. Они удаляются механически или химически при подготовке поверхности или исчезают непосредственно в процессе сварки под воздействием высокой температуры или флюсов;
  • несоответствие химического состава материалов и электродов. Особое внимание следует уделять наличию и количеству кремния и углерода в соединяемых деталях. Для соединения сталей разных марок рекомендуется использовать электроды с низким содержанием диффузионного водорода;
  • недостаточная глубина проплавления, которая напрямую зависит от силы тока и скорости передвижение электрода.

Газовая или плазменная сварка металла является когезией, так как молекулы двух элементов соединяются в результате расплава материала

Адгезивные системы для прямых и непрямых реставраций

Стоматологи используют адгезивы для двух типов реставраций — прямых и непрямых. Способы применения в обоих случаях разнятся, поэтому доктору необходимо понимать как работать с адгезивом в каждой ситуации.

Применение адгезива

Адгезия в случае прямой реставрации — это процедура “приклеивания” композитного материала определенного оттенка, соответствующего оттенку реставрируемого зуба. В этом случае, процедура проводится с целью воссоздания функции или формы, или для восстановления цвета поврежденного зуба. Когда композитный материал внесен в полость зуба и ему придали нужную форму, его можно полимеризовать.

Адгезия в случае непрямых реставраций производится с реставрациями, которые были созданы лабораторным способом или с помощью CAD/CAM технологий в кабинете стоматолога. Создается слепок необходимого поврежденного зуба (зубов), либо же производится электронное оцифровывание необходимой зоны с помощью интраорального сканера. Далее данные или слепки отправляются в лабораторию зубному технику и он создает “непрямую” реставрацию для пациента. Готовая работа возвращается стоматологу, который устанавливает ее в полости рта пациента.

Др. Бургесс так же напоминает, что большинство стоматологов используют разные адгезивные системы. Однако, новые адгезивы — универсальные — могут быть использованы как для прямых, так и для непрямых реставрациях

“Если обратиться к данным опросов среди стоматологов, то большинство из них использует разные адгезивы в своей ежедневной практике,” утверждает Др. Бургесс. “Отдельный адгезив используется при непрямых реставрациях — при установке коронок, мостов, вкладок (инлей/онлей) — а так же отдельный адгезив используется для прямых реставраций — при использовании композитных материалов, Классов I, II, III, IV по Блэку”.

“…универсальные адгезивы могут использоваться при создании как прямых, так и не прямых реставрациях…”

Рейтинг
( 2 оценки, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]